制药用水贮存与分配系统的设计


blueski推荐 [2011-5-22]
出处:来自网上
作者:不详
 

一、    配管的坡度
      配管设计中应为管道的敷设考虑适当的坡度,以利于管道的排水。即管道在安装时必须考虑使所有管内的水都能排净。这个要求应作为设计参数确定在系统中。制药用水系统管道的排水坡度一般取1%或1cm/m。这个要求对纯化水和注射用水系统管道均适用。配管系统中如有积水,还必须设置积水排泄点和阀门。但应注意,排水点数量必须尽量少。
      二、配水管道参数的计算
      制药工艺过程用水的量是根据工艺过程、产品的性质、制药设备的性能和药厂所处地区的水资源情况等多种条件确定的。通过分析对每一个用水点注射用水的使用情况来确定。
      通常,工艺用水量的计算按照两种主要的用水情况进行。一种是根据单位时间工艺生产流程中某种耗水量最大的设备为基础考虑,即考虑工艺生产中最大(或峰值)用水量及最大(或峰值)用水时间;另一种是按照消耗在单位产品上的平均用水量(这个水量包括辅助用水)来计算。无论采用哪一种算法,应尽量考虑生产工艺用水的需求,应在药品制造的整个生产周期内比较均匀,并具有规律性;同时应尽量考虑为适应生产发展,水系统未来可能的规模扩展。。。
      为满足工艺过程的各种需要,制药工艺过程的设计用水量是根据具体的药品品种在生产工艺过程中的直接用水量和辅助过程间接用水量之和决定的。即在考虑生产的具体品种和生产安排诸方面因素后,根据上述工艺分配输送管道的设计形式和要求原则来具体确定。而其计算用水量则由一天中生产过程的高峰用量与平均用量综合确定。不同药品生产过程,其用水量的情况相差很悬殊。
      2.1生产工艺用水点情况和用水量标准
      工艺用水系统中的用水量与采用的工艺用水设备的完善程度、药品生产的工艺方法、生产地水资源的情况等因素有关。通常,工艺用水的变化比较大。一般来说,工艺用水点越多,用水工艺设备越完善,每天中用水的不均匀性就越小。
      制药用水的情况因各个工艺用水点的使用条件不同,差异很大。如前所述,工艺用水系统分单个与多个用水点、仅为高温用水点或仅为低温用水点、既有高温用水点又有低温用水点、不同水温的用水点中,既有同时使用各种水温的情况,又有分时使用不同水温的情况,等等。因此,用水点的用水情况很难简单地确定。必须在设计计算以前确定制药用水系统的贮存、分配输送方式,以确定出在此基础上的最大瞬时用水量。然后,再根据工艺过程中的最大瞬时用水量进行计算。
      工艺过程中最大用水量的标准,根据药品生产的全年产量,按照具体每一天分时用水量的统计情况来确定,确定用水量的过程中应考虑所设置的工艺用水贮罐的调节能力。
      2.2系统设计流量的确定
      设计工艺用水管道,需要通过水力计算确定管道的直径和水的阻力损失。其主要的设计依据就是工艺管道所通过的设计秒流量数值。设计秒流量值的确定需要考虑工艺用水量的实际情况、用水量的变化以及影响的因素等。
      通常,按照全部用水点同时使用确定流量。按照生产线内用水设备的完善程度,设计的秒流量为:
                q=Σn q max c
      式中q——工艺因素的设计秒流量,m3/s;
      n——用水点与用水设备的数据;
      q max——用水点的最大出水量,m3/h;
      c——用水点同时使用系数,通常可选取0.5-0.8。
      2.3管道内部的设计流速
      制药用水是流体的一种类型,它具有流体的普遍特性。流体在管道中流动时,每单位时间内流经任一截面的体积称为体积流量。而管道内部流体的速度是指流体每单位时间内所流经的距离。制药用水管道内部的输送速度与系统中水的流体动力特性有密切的关系。因此,针对制药用水的特殊性,利用水的流体动力特性,恰当地选取分配输送管道内水流速度,对于工艺用水系统的设计至关重要。
      制药用水系统管道内的水力计算与普通给水管道内水力计算的主要区别在于:制药用水系统的水力计算应仔细地考虑微生物控制对水系统中的流体动力特性的特殊要求。具体就是在制药用水系统中越来越多地采用各种消毒、灭菌设施;并且将传统的单向直流给水系统改变为串联循环方式。
      这些区别给制药用水系统流体动力条件的设计与安装带来了一系列意义深刻的变化:例如,为控制管道系统内微生物的滋留,减少微生物膜生长的可能性等。
      为此,美国药典对制药用水系统中的水流状态提出了明确的要求,希望工艺用水处于“湍流状态”下流动。这就需要通过对流体动力学特性的了解,来理解美国药典要求使用“湍流状态”概念的特殊意义。
      通常,流体的速度在管道内部横断面的各个具体点上是不一样的。流体在管道内部中心处,流速最大;愈靠近管道的管壁,流速愈小;而在紧靠管壁处,由于流体质点附着于管道的内壁上,其流速等于零。工业上流体管道内部的流动速度,可供参考的有以下的经验数值:
      (1)普通液体在管道内部流动时大都选用小于3 m/s的流速,对于粘性液体选用0.5~1.0 m/s,在一般情况可选取的流速为1.5~3 m/s;
      (2)低压工业气体的流速一般为8~15m/s,较高压力的工业气体则为15~25 m/s,饱和蒸汽的流速可选择20~30m/s,而过热蒸汽的流速可选择为30~50 m/s。

 流体运动的类型可从雷诺实验中观察到。雷诺根据以不同流体和不同管径获得的实验结果,证明了支配流体流动形式的因素,除流体的流速q外,尚有流体流过导管直径d、流体的密度ρ和流体的黏度ц。流体流动的类型由dqρ/ц所决定。此数值称为雷诺准数,以Re表示。根据雷诺实验,可将流体在管道内的流动状态分为平行流(滞流)和湍流两种情况。
      应注意,雷诺准数为一个纯粹数值,没有单位,因而是无因次数。在计算之中,只要采用的单位一致,对于任何单位都可得到同样的数值。例如在米·千克—秒制中雷诺准数的单位为:
      dqρ/ц=(m)(m/s)(kg·s2/ m4)/( kg·s / m2)
             =(m)0(kg)0(s0)
      式中所有单位全可消去,所剩下的为决定流体流动类型的数值。而采用尺-磅-秒英制时也能得到同样的结果。雷诺实验表明,当Re数值小于2300时,流体为滞流状态流动。Re数值若大于2300,流体流动的状态则开始转变为湍流。但应注意,由于物质的惯性存在,从滞流状转变为湍流状态并不是突然的,而是会经过一个过渡阶段,通常将这个过渡阶段称之为过渡流,其Re数值由2300到4000左右,有时可延到10000以上。因而只有当Re等于或大于10000时,才能得到稳定的湍流。
      由滞流变为湍流的状况称为临界状况,一般都以2300为Re的临界值。须注意,这个临界值系与许多条件有关,特别是流体的进入情况,管壁的粗糙度等。
      由此可见,在制药用水系统中,如果只讲管道内部水的流动,尚不足以强调构成控制微生物污染的必要条件,只有当水流过程的雷诺数Re达到10000,真正形成了稳定的湍流时,才能够有效地造成不利于微生物生长的水流环境条件。由于微生物的分子量要比水分子量大得多,即使管壁处的流速为零,如果已经形成了稳定的湍流,水中的微生物便处在无法滞留的环境条件中。相反,如果在制药用水系统的设计和安装过程中,没有对水系统的设计及建造细节加以特别的关注,就会造成流速过低、管壁粗糙、管路上存在死水管段的结果,或者选用了结构不利于控制微生物的阀门等等,微生物就完全有可能依赖于由此造成的客观条件,在工艺用水系统管道的内壁上积累生成微生物膜,从而对制药用水系统造成微生物污染。
      (1)                滞流
      流体在管道内部流动时,其每个流体质点稳定地沿着与管轴中心平行的方向有条不紊的流动。此种流动称为平行流动(层流)或粘滞流动,简称滞流。流体处于滞流状态下时,流速沿导管直径依抛物线的规律分布。此时管道中心的速度最大,沿曲线渐近管壁,则速度渐小至等于零,其平均速度为管中心速度之一半。
      (2)                湍流
      流体在管道内部流动时,流体质点不按同一方向移动,而是作不规则的曲线运动,各质点的运动速度在大小和方向上都随时间发生变化,流体质点间的运动迹线极其紊乱而流线很易改变的流动称为紊流或湍状流动,简称湍流。当流体处于湍流状态时,曲线形状与抛物线相似,但顶端稍宽。由于在湍流中流体质点的相互撞碰,其流速在大小和方向上均时有变化,并趋向于一个平均值。因此,湍流的状态愈明显,其曲线的顶端愈平坦,当处于十分稳定的湍流状态时,其平均速度为管中心最大速度的0.8~0.9倍左右。
      按照上述对流速在管道内部分布的描述可知,即使流体确为湍流,其接近管壁处仍可能存在一层滞流的边界层。这个边界层实际上包括真正的滞流层与过渡层。在真正的滞流层中,流体速度近似地成直线下降,到管壁处速度趋于零。过渡层则介乎真正滞流层与流体主体之间。边界层的厚度为Re数的函数。
      因此,在流体流动中并不存在单纯的湍流,也没有纯粹的滞流。实际上,在湍流中同时有滞流层存在;而在滞流中也可能有湍流的存在,这是因为部分流体质点在滞流时有变形和旋转的现象。流体边界层的存在,对其传热和扩散过程都会产生很大的影响。
      上述流速分布情况系指流体的流动已达稳定状态而言。流体在进入管道后需要流经一定距离,其稳定的状态才能真正形成。对于湍流,实验证明,其流经的直管距离达到40倍管道直径以后,稳定的状态才方可获得。
      另外,流速的分布规律只有在等温状态下才是成立的,即要求流体中各点的温度是一致的、恒定不变的。
      2.4制药用水系统管道的阻力计算
      工艺用水管道的水力计算,通常,根据各用水点的使用位置,先绘出系统管网轴测图,再根据管网中各管段的设计秒流量,按照制药用水的流动应处于湍流状态,即管内水流速度大于2m/s的要求,计算各管段的管径、管道阻力损失,进而确定工艺用水系统所需的输送压力,选择供水泵。
      (1)确定输水管径
      在求得轴测图中各管段的设计秒流量后,根据下述水力学公式计算和控制流速,选择管径:
               di=18.8(Qg/υ)1/2
      式中di——管道的内径,m;
      Qg——各管段的设计秒流量,m3/s;
      υ——管内流速,m/s。
      一般情况下,管道的直径是由系统内经济流速确定的。由上式可见,一旦流速确定,自然就得到了对应流量的直径。配管中流体的阻力,对于同一流量来说,管径越大,阻力损失越小。这在动力方面是经济的,但设备的费用会增加,并且还可能不会满足工艺用水系统水流状态为湍流的要求。

制药工艺管道内满足微生物控制的流速采用2~3m/s。
      (2)确定管段的压头损失
      ①   工艺用水系统管道的沿程阻力损失
      Py=K L
      式中
      Py——工艺管段的沿程阻力损失,m H2O;
      L——所计算管段的长度;
      K——管道单位长度的压力损失,按照制药用水管道通常采用不锈钢,管道内部的流速大于2m/s,则可使用下式计算:
            K=0.00107×υ2/d1.3(m H2O/m)
      υ——管道内部平均水流速度,m/s;
      d——管道计算内径,m。
      通常,直管段的压力损失可用K=0.007×(m H2O/m)计算。
      ②   管道的局部损失
                      Pj=Σξ(υ2/2g)
      式中 Pj——局部阻力损失的总和,m H2O;
           Σξ——局部阻力系数之和,按照工艺用水系统管道中的不同管件及阀门附件的构造情况有各种不同的数值;
          υ——沿着水流方向,局部阻力下游的流速;
           g——重力加速度,m/s2。
      在工艺用水系统管道局部阻力计算时,通常可不进行详细的计算,而采用沿程阻力损失的百分数,常取值为20%。
      ③管道接头阻力损失  管接头的阻力损失取决于其大小和类型,用ξ值计算。管道接头阻力系数如表5.1:
      表5.1     管接头的阻力损失
            管径/mm203250≤63
            管接头类型阻力系数ξ
            圆弧弯头1.51.00.60.5
            90°弯头2.01.71.10.8
            45°弯头0.3
            T型接头1.5
            入口0.5
            出口1.0

      ④管道中的压力损失,有下列两种公式:
                       Σ△р=Σ△рy+Σ△рfi+Σ△рva
      式中р——总管道的阻力;
      рy——管道的沿程阻力;
      рfi——管接头的阻力;
      рva——阀门阻力。
                   Σр=Σξ·(υ2/2g)ρ·1000
      式中Σр——系统管道压力损失;
      Σξ——管接头阻力之和;
      υ——管道内部流动速度,m/s;
      g——重力加速度,9.81 m/s2;
      ρ——液体密度,kg/m3。
      ⑤阀门中的压力损失
                       △рva=(Q/Kv)2·(ρ/1000)
      式中△рva——阀门中的压力损失;
      Q——流量,m3/h;
      Kv——阀门特殊的流量(见图3-1),m3/h;
      ρ——液体的密度,kg/m3。
                
         ρ=0.1Mpa 
      图3-1阀门特殊的流量Kv的定义
      (3)管道阻力的计算方法
      根据管道的布置方式,制药用水系统阻力计算的步骤略有区别,但无论系统为不循环管道系统或循环的管道系统,由于循环系统中通常是水回至贮罐内,水泵本身并不能形成闭环路,因系统中通常是水回至贮罐内,水泵本身并不能形成闭环路,因此,它们的计算方法是相同的。管道系统的计算与给水管道的计算类似,步骤大致为:

   ①根据工艺用水系统轴测图选出要求压力最大的管路作为计算管路;
      ②依据管路中流量变化的节点对计算管路进行编号,并标明各计算管段的长度;
      ③按上述(1)节提供的公式计算各管段的设计秒流量,工艺用水系统的设计秒流量可直接在2~3m/s范围内选取;
      ④进行水力计算,决定各计算管段的直径和水压头损失,可通过查水力计算选用表,计算出水压头损失;
          ⑤按照计算结果,确定工艺用水系统所需的总水压头H(m);
      ⑥根据总水压头选择水泵的功率和压头,并进行系统配管的校核计算。
      制药用水系统设备选型
      一、制药用水系统设备的特殊要求
      制药用水系统内选用的设备,其基本特性与非制药用水系统设备的性能并无多大的区别。例如,纯化水用除盐设备的基本作用与其他行业的基本相同。制药用水系统只是在对微生物的控制上,有其特殊的要求,而系统中采用的水处理设备均围绕控制系统内微生物的要求作相应的处理。
      1、对纯化水系统设备的特殊要求
      对于纯化水系统来说,水处理流程中的微生物控制始终贯穿于整个处理过程。例如,系统中如果采用活性炭过滤装置或软化器,则因为活性炭的吸附作用而拦截在过滤器上流侧的有机物会不断地增多,如果没有相应的除菌措施周期性地对活性炭过滤器进行消毒处理,降低活性炭过滤器上流侧的生物负荷,则经过一段时间的使用后,尽管活性炭过滤器本身的功能(降低余氯量和去除有机物)并没有减小,但由于其上流侧的有机物的堆集,会使活性炭过滤器使用后水中微生物的指标超过处理前的进水指标。又如,纯化水的成品贮罐和配水管路要有定期进行微生物消毒的措施。因此,应该根据工艺用纯化水系统内部所采用的水处理设备的功能和特点,围绕控制和减少微生物的污染作文章。
      另外,还应该根据所选用的消毒方法,恰当地选择设备的制造材料。例如,如果是采用热处理的方法(巴斯德消毒或蒸汽灭菌),则活性炭过滤器或软化器的制造材料应采用耐温的材料,比如不锈钢;而当采用化学消毒剂(臭氧或双氧水)时,则设备的制造材料可以不考虑耐温问题,转而考虑设备耐腐蚀的寿命问题,比如采用玻璃钢树脂内衬PE。
      纯化水设备还应具备无不流动死水段的特性,全部设备都应该具有能够将系统内部余水放空的能力,系统外部的水也不会倒流回系统而产生污染。总之,纯化水处理设备和系统管道均应有防止污染和定期消毒处理、降低生物负荷或恢复至有生物负荷水平的能力。
      2、对注射用水系统设备的特殊要求
      与纯化水系统的要求类似,并且更为严格。注射用水系统尤其重视微生物指标的控制。注射用水系统中的主要设备为蒸馏水机、贮罐、卫生级输送水泵、阀门和输送管道。对于这些设备或零部件,注射用水系统的特殊要求与纯化水系统相比较近乎于苛刻。主要的原则是控制蒸馏水出水的质量,蒸馏水机能够对自身进行灭菌、以防止蒸馏水机的蒸馏水出水与冷却水可能产生的交叉污染,水泵的卫生管理,系统管道对微生物的滞留和滋生情况,系统用纯蒸汽灭菌等等。
      3、对纯蒸汽系统设备的特殊要求
      纯蒸汽设备首先应能生产出具有注射用水同样水质指标的纯蒸汽,纯蒸汽的压力在克服管道系统阻力的基础上,能够满足灭菌设备或对系统管道进行湿热灭菌的压力与温度要求。纯蒸汽设备和管道在不使用的时候,能够与大气隔离,不会受到空气中微生物的污染。纯蒸汽设备和蒸馏水机一样,蒸馏器的换热部分应能够防止冷却水泄漏对纯蒸汽产生的污染。
      典型制药用水系统设计实例
      制药用水系统根据工艺用水的要求和具体用水情况的不同,有各种各样的系统设计形式。无论是哪一种系统设计形式,都围绕着制药用水的特殊情况,针对工艺用水的制备、贮存、分配输送和微生物控制等方面的要求进行综合性设计。制药用水系统的设计都是综合性设计。
      典型纯化水系统流程设计要点
      纯化水系统可以单一使用目的设计,也可以作为注射用水的前道工序来处理。纯化水系统的设计可有多种选择,这些选择与源水的水质、产品的工艺要求及企业的其他实际情况相关,最根本的原则是符合GMP的要求及生产出符合标准的纯化水。
      典型纯化水系统的配置,其设计要点简介如下。
      (1)            源水贮罐
      一般源水贮罐应设置高、低水位电磁感应液位计,动态检测水箱液位。在非低水位时仍具备源水泵、计量泵启动的条件,水箱材料多采用非金属,如聚乙烯(PE)。
      (2)            源水泵
      可采用普通的离心泵,泵应设置高过热保护器、压力控制器,以提高泵的寿命。为防止出现故障,泵还应设有自动报警系统。
      (3)            药箱、计量泵
      假如源水水质浊度较高,通常运用精密计量泵进行自动加药(加药量由调试时确定),同时可根据城市管网供水的特点及源水水质报告,加入适量的絮凝剂,使源水中的藻类、胶体、颗粒及部分有机物等凝聚为较大的颗粒,以便经后面的砂滤去除。加药箱的材质亦多为非金属材料(如PE),计量泵的定量加药应与源水泵运转同步进行。

(4)            机械过滤器
      源水若使用井水,井水中常含有颗粒很细的尘土、腐殖质、淀粉、纤维素以及菌、藻等微生物。这些杂质与水形成溶胶状态的胶体微粒,由于布朗运动和静电排斥力而呈现沉降稳定性和聚合稳定性,通常它们不可能用自然沉降的方法除去,而应经源水预处理,即用添加絮凝剂来破坏溶胶的稳定性,使细小的胶体微粒絮凝成较大的颗粒,通过砂滤和炭滤预过滤除去这些颗粒。在砂滤中所用的滤料多采用大颗粒石英砂,把源水中的絮状杂质(主要为有机物腐殖质和粘土类无机化合物)去除,通过机械过滤器处理后,出水的浊度<0.5FTU。由于源水中氯离子对金属的氧化性,以及时间久了会使金属的表面发生晶间腐蚀。因此,机械过滤器罐体可采用玻璃内衬PE胆的非金属罐体,或不锈钢内衬橡胶罐体。
      (5)            活性炭过滤器
      在本例的水系统中采用了反渗透处理工序,而反渗透进水除了要求淤集密度指数SDI≤5之外,还有另一个进水指标,即余氯<0.1mg/L,为此配置了活性炭过滤装置。在系统中,活性炭过滤器主要具有两个处理功能:①吸附水中的部分有机物,吸附率约为`60%左右;②吸附水中残余余氯离子,因为对于粒度在1~2nm左右的无机胶体、有机胶体、深解性有机高分子杂质和残余氯离子,通过机械过滤器是难以去除的。为了进一步纯化源水,使之达到反渗透滤膜的进水指标要求,在工艺流程中通常设计一级活性炭过滤器。活性炭之所以能用来吸附粒度在0.1~0.9nm左右的物质,是由于其结构中存在大量平均孔径在2~5nm的微孔和粒隙。活性炭的这种结构特点,使它的吸附表面积能达到500~2000m2/g,由于一般有机物的分子直径都略小于2~5nm,因此活性炭对有机物的吸附最有效。此外活性炭还有很强的脱氯能力,活性炭在整个吸附脱氯过程并不是简单的吸附作用,而是在其表面发生了催化作用,因而活性炭不存在吸附饱和的问题,只是损失少量的炭,所以活性炭脱氯可以运行相当长的时间。活性炭除了能脱氯及吸附有机物外,还能除去水中臭味、色度,以及残留的浊度,在水系统中的综合处理能力极强。但应注意,活性炭在使用一定时期后,仍会减弱其吸附能力,而需要再生。
      经以上二级处理,源水的纯度得到大大提高。经处理后的水中余氯含量已小于0.01mg/L。由于源水中残余的氯离子对金属的氧化性,以及长时间使用后会在金属的表面发生晶间腐蚀。因此,活性炭过滤器的罐体可采用玻璃内衬PE胆的非金属罐体,或不锈钢内衬橡胶罐体。
      (6)            软水器
      水系统中采用的软化器是利用钠型离子树脂中可交换的Na+将水中的Ca+、Mg+交换出来,使源水软化成软化水。这对防止反渗透膜表面结垢,提高反渗透膜的工作寿命和处理效果意义极大。由于再生液中CL-能使金属腐蚀,因此软化器罐体宜采用非金属的材料制造,例如,玻璃钢外壳内衬PE胆,或不锈钢内衬橡胶罐体。软化器的滤料采用钠型阳离子树脂。
      (7)精  滤
      精滤在水系统中又称保安过滤,它通常由熔喷成型的孔径为5μm的聚丙烯(PP)膜来实现。精滤是源水进入反渗透膜前最后一道处理工艺。其作用是防止上一道过滤工序可能存在的泄漏。否则,部分固体微粒就会渗入反渗透膜中,使反渗透膜阻塞。
      (8)高压泵
      作为反渗透系统动力源的高压泵,宜配置高、低压保护、过热保护,以防止泵的损坏。高压泵的性能稳定可靠,以保证水系统的运行。二级泵的材质一般多选用316L不锈钢。
      (9)反渗透主机
      水系统的反渗透主机主要部分是反渗透膜组件,由于反渗透的出水偏酸性,金属的膜壳会逐渐被腐蚀,因此,膜壳的选材应保证主机除盐的作用长期、稳定可靠的达到设计要求。反渗透主机是设计,残余的反渗透基准水温为25℃,水的利用率应达到70%~75%,反渗透系统的总脱盐率应大于97%。反渗透的控制系统可采用微电脑PLC控制,来实现反渗透膜组件的顺洗、制水、水箱满、药洗、高压泵的高低压保护、过热保护等工艺过程的全自动控制,并应带有电导率的随机显示。
      (10)一级纯化水箱(中间水箱)
      该设备的材质可采用S304不锈钢,容器的容量依据设计要求。
      (11)一级纯化水泵(中间增压泵)
      水系统的一级纯化水泵应设置高过热保护器、压力控制器、水量监控器,以提高泵的寿命。出现故障时泵应有自动报警系统。
      (12)酸碱再生箱与水力喷射泵
      为确保混床中的阴离子树脂和阳离子树脂的再生需要,系统设置了适当容量的酸碱再生箱2只并配套喷射泵。再生箱的材料应采用耐腐蚀的非金属材料。
      (13)混床离子交换装置
      为了使经过反渗透主机处理后的水质达到电阻率≥2MΩ·m的要求,也为了保证离子交换器失效后树脂的再生不影响生产,在设计中通常都配置2台混床,1台使用,1台进行再生处理,整个使用、再生的过程可通过控制系统实现自动切换,手动再生。通常在水系统反渗透主机后设置有离子交换的深度除盐装置。离子交换器使用的滤料
      应采用优质树脂。
      (14)微孔过滤器
      由孔径为0.22μm的聚四氟乙烯滤棒组合成的微孔过滤器,是为了去除经上述处理后在纯化水中残留的微小颗粒和离子交换装置中所泄漏的破碎树脂等,使出水最终达使用条件中对供水水质的所有要求。

 (15)二级纯化水箱
      即纯化水成品水箱,该容器为316L不锈钢材料制造,为了使容器内积水完全排空和便于在线清洗,该容器应采用圆顶圆底立式结构。
      (16)二级纯化水泵
      二级纯化水泵应采用卫生级泵。泵的形式应为无容积式气隙,泵底最低处应安装排水阀以将水排尽。泵应设置高过热保护器、压力控制器、水量监控器,以提高泵的寿命。出现故障时,泵设有自动报警系统。泵的使用功率应足够大,足以使系统内水的流速>2m/s。
      (17)紫外线杀菌器
      尽管整个纯化水系统通过以上的各个流程处理,使水质达到了供水水质的要求,但为了防止管道上的滞留水及容器管道内壁滋生细菌而影响供水质量,在反渗透处理单元进出口的供水管道末端均应设置大功率的紫外线杀菌器,以保护反渗透处理单元免受水系统可能产生的微生物污染,杜绝或延缓管道系统内微生物细胞的滋生。
      (18)巴斯德灭菌器
      在整个水系统中,有两处需要对微生物进行特殊控制。一处是活性炭过滤器和软化器,这是因为活性炭过滤器和软化器的主要作用都是去除有机物,其上流侧必定会随使用时间的推移积累大量的有机物。为使该处理单元具有确定的处理微生物的能力,又不会因微生物积累过多而对下流侧造成污染,有必要对其进行定期的消毒。另一处是成品纯化水循环系统的定期消毒。在这个例子中,采用了巴斯德灭菌器完成上述所需的定期消毒灭菌。
      每个巴斯德灭菌器设置2个温控探头,一个在使用设备贮罐内,另一个在热交换器的出口处,巴斯德灭菌器的回水温度不低于80℃,出水温度在83℃以上。通常,每周消毒灭菌1次,整个消毒过程持续1~2h。
      巴斯德灭菌器常用的消毒程序是:贮罐的水量约15%,在一定时间内升温至80℃,然后保温1~2h,然后冷却,同时进纯化水并降温至25℃。巴斯德灭菌的消毒周期视微生物污染水平而定,例如当微生物超过50CFU/ml时消毒处理。