药典规定的纯化水和非药典规定的纯化水


blueski推荐 [2012-4-15]
出处:百度
作者:不详
 

 

 

 

FINAL TREATMENT OPTIONS:

NON-COMPENDIAL and COMPENDIAL

PURIFIED WATER

 

终处理选项:

药典规定的纯化水和非药典规定的纯化水

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 FINAL TREATMENT OPTIONS: NON-COMPENDIAL AND COMPENDIAL PURIFIED WATER终处理选项:药典规定的纯化水和非药典规定的纯化水

 

5.1 INTRODUCTION介绍

 

This chapter discusses the final treatment technologies and basic system configurations related to the manufacturing process of USP Purified Water and non-compendial water.

该章讨论的是USP纯化水和非药典规定的水的制备过程相关的基本系统结构和终处理工艺。

 

Various system configurations are presented, and reflect a significant shift from ion exchange based systems to membrane based systems. Equipment and system materials, surface finish and other design factors are discussed to promote the use of Good Engineering Practice for proper selection of components, piping, instrumentation, and controls.

将介绍各种系统,并反应从离子交换基础系统到膜基础系统的有效转换。将·讨论设备和系统的材料、表面磨光和其他设计因素以促进《良好工程实务规范》中的正确选择组件、管线、仪器操作和控制的应用。

 

USP Purified Water and non-compendial water can be produced by an almost unlimited combination of unit processes in various configurations. The most common pretreatment and final treatment technologies used in purified water production are shown in Figure 5-1, Figure 5-2, and Table 5-4 at the end of the chapter. This chapter discusses the final treatment unit processes currently utilized, including ion exchange, reverse osmosis, electrodeionization, ultrafiltration, microfiltration, and ultraviolet light. These technologies as well as distillation (see Chapter 6) are utilized in thousands of systems for the successful production of purified and non-compendial water.

在生产USP纯化水和非药典规定的水时,不同的加工单元之间的组合几乎是不受限制的。本章结尾处的图5-1、图5-2和图5-3显示了纯化水生产中最普通的预处理和终处理工艺。该章讨论了当前使用的终处理操作单元,包括:离子交换、反渗透、电法去离子、超滤、微滤和紫外光。成千上万的成功的生产纯化水和非药典规定的水的系统都使用了这些工艺以及蒸馏(见第6章)。

 

Ion exchange based systems were the dominant systems for decades in purified water production and are still successfully utilized in facilities today. The last decade has seen the growth of reverse osmosis membrane based systems increase to the point where over 90% of new systems employ primary reverse osmosis, with final polishing by continuous electrodeionization, ion exchange, or a second reverse osmosis stage. Membrane based systems usage has increased due to chemical consumption reduction, contaminant rejection (ionized solids, organics, colloids, microbes, endotoxins, and suspended solids), reduced maintenance, consistent operation, and effective lifecycle cost.

离子交换基础系统数十年以来一直在纯化水生产中占有优势,而且在今天它也在工厂中成功的利用。前十年我们已经看到反渗透膜基础系统不断的发展,以至有90%的新系统都采用了一级反渗透,并在其后加上电法去离子、离子交换或二级反渗透以作最后抛光。膜基础系统的应用不断增长,是因为膜基础系统的化学试剂消耗低、抗污染(离子化固体、有机物、胶体、微生物、内毒素和悬浮颗粒)、维护简单、操作联贯以及有效的寿命周期成本。

 

The various membrane based system configurations are compared with ion exchange and distillation in Table at the end of this chapter.

该章结尾处的表格将显示各种膜基础系统的结构和离子交换以及蒸馏的比较。

 

Equipment construction is discussed for each unit process section to promote proper selection of materials, surface finishes, and other design factors. The total system capital cost is influenced more by equipment design details than by process selection. Many aspects of equipment can be "overdesigned" and hence, become unnecessarily costly. Proper thought must be given to the individual component's function, location, required microbial performance, sanitization, and other factors, to optimize design. It is not necessary to construct every makeup system component with the same level of surface finish and detail as the distribution system for successful operation in most cases.

通过讨论各个操作单元的设备结构,以促进正确的选择材料、表面磨光和其他设计因素。设备设计细节要比方法选择对整个系统资产成本的影响大。设备的许多方面都可能“设计过度”,因此会导致不必要的浪费。必须正确的考虑单个元件的功能、位置、要求的微生物特征、消毒和其他因素,以做出最佳的设计。没必要将系统的每个组成元件都建造的同多数情况中成功运行的分配系统的表面磨光和详细水平一样。

 

Many material selections are made erroneously to conform to cGMP requirements that do not actually dictate the details of construction for most final treatment components. Good Engineering Practice should be employed to optimize the system for consistent operation to specifications and lifecycle cost optimization. Part of the consideration is the need to replace system components (e.g., filters, RO membranes) at a frequency that meets GMP.

许多材料的选择都错误的被要求服从cGMP的要求,实际上cGMP并没有对多数终处理元件的结构细节做出指示。应依照《优良工程实务规范》来优化系统使得操作和指标一致以及寿命周期成本最佳。需考虑的要素是系统元件(如:过滤器、反渗透膜)的更换频率应满足GMP的要求。

 

This chapter does not differentiate between compendial and non-compendial water system equipment. Non-compendial water is often manufactured and validated in a manner consistent with compendial water.

该章中的药典规定的水和非药典规定的水的系统设备间没有差别。通常非药典规定的水和药典规定的水的生产和验证的方式是相同的。

 

5.2 ION EXCHANGE 离子交换

 

5.2.1 Description 说明

 

Cation and anion exchange resins are regenerated with acid and caustic solutions, respectively. As water passes through the ion exchange bed, the exchange of ions in the water stream for the hydrogen and hydroxide ions, held by the resin, occurs readily and is driven by concentration. Thus, the regeneration process driven by excess chemical concentrations. The important parameters of this system include resin quality regeneration systems, vessel linings, and waste neutralization systems. The operation of the system can be monitored by conductivity (resistivity) of the product water.

阳离子和阴离子交换树脂是分别用酸和碱再生的。当水通过离子交换床的时候,树脂捕获的离子和水中的氢离子和氢氧根离子发生了置换,该过程是易于发生的并且是受浓度驱使的。因此,可通过添加高浓度的化学药品来促使再生。该系统的重要参数包括:再生系统的树脂性质、容器的内壁材料和废水的中和系统。可通过制造出来的水的电导率(电阻率)来控制系统的操作。

 

A two-bed ion exchange system includes both cation and anion resin tanks. Two-bed ion exchange systems often times function as the workhorse of a strictly deionization (DI) water system in terms of salt removal.

复合床离子交换系统包括了阳离子树脂槽和阴离子树脂槽。从去盐方面来说,复合床离子交换系统通常是一个严格的去离子(DI)水系统的重负荷的机器。

 

Mixed-bed ion exchange systems are typically used as a secondary or "polishing" system. Mixed-bed DI units consist of a single tank with a mixture of anion and cation removal resin. A cation bed can also be used as a "polishing" Dl step, rather than a mixed-bed DI.

混合床离子交换系统典型的用作二级或“抛光”系统。混合床去离子单元是由装有混合的阴阳离子树脂的单槽构成。阳离子床也可以用作“抛光”去离子步骤,而不是混合床去离子。

 

Ion exchange resins are available in on-site and off-site regenerable systems. On-site regeneration requires chemical handling and disposal, but allows for internal process control and microbial control. Off-site regeneration can be accomplished through new resin to be used one time, or through repeated regeneration of the existing resin. New resin provides greater capacity and some possible quality control advantages, but at a higher cost. Regenerated resin produces a lower operating cost, but may raise quality control issues, such as resin segregation, regeneration quality, and consistency.

离子交换树脂可以在位和脱位再生。在位再生要求化学控制和处理,但可以在内部进行过程控制和微生物控制。脱线再生可通过只用过一次的新树脂或对现有树脂的重复再生实现。新树脂有较高的捕获能力以及一些质量控制的优点,但是成本较高。再生树脂的操作成本较低,但可能会出现质量控制问题,如树脂破裂、再生质量问题、和一致性问题。

 

Additional details on ion exchange can be found in Chapter 11.

离子交换的附加细节将在第11章里讲到。

 

5.2.2 Application应用

 

The major purpose of ion exchange equipment in USP purified water systems is to satisfy the conductivity requirements of the USP. Deionization (Dl) systems are often times used alone or in conjunction with reverse osmosis to produce USP Purified Water. Typical ion exchange systems do not effectively remove other contaminants noted in the USP purified water specification. In the ion exchange process, salt ions, which are common to potable water, are removed from the water stream and replaced with hydrogen and hydroxide ions. Ion exchange systems are available in various configurations that include two-bed Dl and mixed-bed Dl. Both configurations are available in on-site and off-site regeneration systems.

USP纯化水系统中离子交换设备的主要目的是满足USP的电导率要求。通常单独使用去离子系统或将其连接到反渗透上来制造USP纯化水。典型的去离子系统并不能有效的去除USP纯化水指标中提到的其他污染物。在离子交换过程中,水中的盐离子(通常存在于饮用水中)被除去,并替换成氢离子和氢氧根离子。各种构型的离子交换系统都是适用的,这些构型包括:复合床去离子和混合床去离子。这两个构型都可以在位和脱位再生。

 

5.2.3 Pretreatment Requirements 对预处理的要求

 

Ion exchange systems require pretreatment to remove undissolved solids from the water stream and to avoid resin fouling or degradation. Although dechlorination is also recommended to avoid resin degradation by oxidation, the low levels of chlorine commonly found in most potable water supplies normally demonstrate only long-term effects on most ion exchange resins.

离子交换系统要求预处理先将水流中的不溶固体去除,以避免树脂污垢和降解。尽管也建议采用脱氯以避免树脂被氧化后降解,但是多数饮用水中的氯水平都较低,这表明它对多数

离子交换树脂只有长期影响。

 

5.2.4 Cost Savings Factors 成本节约因素

 

Most of the cost savings opportunities for these systems revolve around the correct choices in materials of construction, pretreatment options, instrumentation, and sizing of the Dl system. Acceptable piping materials of construction can vary from PVC to 316L SS. A correctly designed system will minimize the equipment size and maximize the amount of time between regenerations, considering microbial control and maintenance. Choosing to monitor only the critical parameters such as conductivity (resistivity), flow, pressure, etc., can minimize instrumentation.

这些系统的多数成本节约机会都是对下列项的正确选择:建造材料、预处理选项、使用的仪器和去离子系统的大小。结构中适用的管线材料可以从PVC316L SS里面选。设计合理的系统将会考虑在微生物的控制和系统维护的基础上,使设备的尺寸降到最小,同时能使再生的频率降到最低。选择只监控一些关键参数(如:电导率(电阻率)、流速、压力等)能将仪器使用降到最低。

 

There are also cost savings choices that will need to be made with respect to capital purchase and on-going operating costs. These choices will steer you towards Dl off-site regenerable bottles, on-site regenerable Dl vessels (with automatic or manual controls) or another water treatment unit operation.

在采购资金和运行成本方面,还可选择其他的方面的成本节约。这些是去离子脱线再生瓶、在线再生去离子容器(自动或手动控制)或其他水处理单元操作方面。

 

5.2.5 Advantages and Disadvantages 优点和缺点

 

Advantages优点:

 

·Simple design and maintenance 设计和维护简单

·Flexible in water flow production 生产中,水的流动性好

·Good upset recovery 好的紊乱恢复性

·Low capital cost for single train Dl systems 单床去离子系统的成本低

·Removes ionizable substances (ammonia, carbon dioxide, and some organics)可去除可电离的物质(铵、二氧化碳、和一些有机物)

 

Disadvantages缺点:

 

·High cost of operations on high total dissolved solids (TDS) in-feed-water 处理给水中的高的总溶解固体(TDS)的成本高。

·Requires chemical handling for on-site regenerable Dl (safety and environmental issues) 去离子的在位再生要求处理化学试剂(安全和环境问题)

·Full on-site Dl system can take significantly more floor space due to primary vessels, chemical storage, and neutralization system 由于有一些主要的容器、化学试剂的储藏以及中和系统,使得整个在位去离子系统会占很大的地面面积

·Off-site Dl systems will require outside service and significant costs for regeneration services 脱线去离子系统要求有外部辅助设备并且再生设备的成本也很高

·Off-site regeneration involves consequent loss of control over the use, handling, and care of Dl vessels 脱线再生会使去离子容器的使用、操作和保养不可控制。

·Dl vessels are excellent places for microbial growth to occur between regenerations 在两次再生之间的时间段,去离子容器是微生物生长的最佳地点。

 

5.2.6 Sanitization 消毒

 

All ion exchange resins can be sanitized chemically with various agents. The degree of resin attrition is a function of resin type and the chemical agent. Chemical cleaners include peracetic acid, sodium hypochlorite, and others. Some resins are capable of hot water sanitizations at temperatures between 65to 85. Ion exchange resins suitable for limited thermal sanitizations include: strong acid cation resin, and standard polystyrene cross-linked with divinylbenzene Type 1 strong base resin.

所有的离子交换树脂都能用各种试剂进行化学消毒。树脂的损耗程度取决于树脂的功能类型和化学试剂的不同。化学清洁剂包括:过氧乙酸、次氯酸钠和其他的试剂。一些树脂可以用65-85℃的热水消毒。只能用热消毒的离子交换树脂包括:强酸阳离子树脂、标准的聚苯乙烯交联1型二乙烯基苯的强碱树脂。

 

Table 5-1 Comparison for ion exchange unit operations

5-1:离子交换单元操作的对照表

 

Off-Site Regenerated

脱位再生

On-Site Regenerated

在位再生

Chemical Use:

化学试剂的使用

N/A

Extensive

广泛的

Sanitization Method:

消毒方法

Change Out or Hot Water

更换或热水消毒

Regenerate

再生

Capital Cost:资金成本

Minimal

Extensive

Water Consumption:

耗水

None

Medium 中等

Energy Consumption:

耗能

Minimal

Minimal

Maintenance Requirements:

维护要求

Minimal

Medium 中等

Outside Service Used:

使用的外部辅助设备

Extensive

Low

Reliability:可信度

Good*

Good

Upset Recovery Operations:

紊乱恢复操作

Good, Replace

好,替换

Good

 

*Note: Having the Dl bottles regenerated by an outside service does not relieve the manufacturer of the responsibility to have quality control of their ion exchange system.

*注:用外部辅助设备再生去离子瓶并不能减轻制造商对他们的离子交换系统质量控制的责任。

 

Table 5-2 Limits of Operation and Expected Performance

5-2:操作和预期预处理的限度

 

Feed Quality:给水质量

 

·Total Suspended Solids (turbidity):

总悬浮固体(混浊度)

·Filtration of 10 micron is recommended

推荐用孔径是10um的过滤器

·Chlorine Tolerance:

氯耐受性

·Varies with type of resin, generally at 0.5 ppm, some resins are rated up to 1 ppm

取决于树脂的类型,通常是0.5ppm,有些树脂规定为1ppm

·Total Dissolved Solids (TDS):

总溶解固体(TDS)

·< 200 ppm, operation at higher TDS levels is possible but operating costs can be high

<200ppm,在较高水平的TDS下操作是可能的,但操作成本会很高

·Temperature:温度

·Most cation resin up to 121; most anion resin 40-70; some anion resin up to 100

多数阳离子树脂可到121℃,多数阴离子树脂是40-70℃,某些阴离子树脂可到100

·Conductivity:电导率

·Can achieve conductivity below 1.0 microsiemen/cm depending on the system pretreatment and regeneration schedule

是否能达到<1.0 microsiemen/cm的电导率,取决于系统的预处理和再生方案

·Regeneration and Chemical Efficiency: 再生和化学试剂功效

·Linear variation is inverse to the feed water total dissolved solids- best below 200 ppm

线性变化和给水的总溶解固体(最好是小于200 ppm)相反

·Feed TOC:给水的TOC含量

·Ability to avoid fouling varies with type of resin可以避免由树脂的类型变化而引起的污垢变化

·Product TOC:

制造出的水的TOC含量

·May increase or decrease incoming TOC levels depending on resin type and feed water -difficult to predict.

是增加还是降低给水的TOC水平,取决于树脂的类型和给水(是难以预料的)

 

5.3 CONTINUOUS ELECTRODEIONIZATION (CEDI)连续电法去离子(CEDI)

 

5.3.1 Description说明

 

Electrodeionization removes ionized or ionizable species from water using electrically active media and an electrical potential to effect ion transport. Electrodeionization is distinguished from electrodialysis or oxidation/reduction processes by the use of electrically active media, and is distinguished from other ion exchange .processes by the use of an electrical potential.

电法去离子是通过使用电活化介质和促使离子运送的电位差来去除水中的离子化或可电离的物质。由于使用了电活化介质,电法去离子是不同于电渗析或氧化/还原过程;而且由于它采用了电位差,它也不同于其他离子交换过程。

 

The electrically active media in electrodeionization devices functions to alternately collect and discharge ionizable species and to facilitate the transport of ions continuously by ionic or electronic substitution mechanisms. Electrodeionization devices may comprise media of permanent or temporary charge and may be operated batchwise, intermittently, or continuously. The devices can be operated so as to cause electro-chemical reactions specifically designed to achieve or enhance performance and may comprise electrically active membranes such as, semi-permeable ion exchange or bipolar membranes.

电法去离子设备中的电活化介质的功能是:它能交替的浓缩和释放可电离的物质,并能通过离子或电子交替机制使离子连续运送变得便利。电法去离子设备可能是由永久的介质或暂时装填的介质构成,并可以间歇的或连续的分批操作。该设备的运行能引起电化学反应,这是为获得或加强性能特定设计的,同时该设备还可能包含电活化膜,如:离子交换半透膜或双级膜。

 

The continuous electrodeionization (CEDI) processes are distinguished from the collection/discharge processes (such as electrochemical ion exchange or capacitive deionization) in that the process is continuous rather than batch or intermittent, and that the ionic transport properties of the active media are a primary sizing parameter, as opposed to ionic capacity. Continuous electrodeionization devices typically comprise semi-permeable ion exchange membranes, permanently charged media, and a power supply that can create a DC electrical field.

连续电法去离子(CEDI)过程是不同于浓缩/排放过程(如:电化学离子交换或电容去离子),因为该过程是连续的而不是分批的或间歇的,活化介质的离子输送特征相对于离子带电量来说是一个初级筛分参数。典型的连续去离子设备包括离子交换半透膜、永久带电荷的媒介以及能产生直流电电场的电源。

 

A continuous electrodeionization cell is formed by two adjacent ion exchange membranes or by a membrane and an adjacent electrode. CEDI units typically have alternating ion depleting (purifying) and ion concentrating cells that can be fed from the same water source, or different water sources. Water is purified in CEDI devices through ion transfer. Ionized or ionizable species are drawn from the water passing through the ion depleting (purifying) cells into the concentrate water stream passing through the ion concentration cells.

连续电法去离子室是由两个邻近的离子交换膜或者一个膜和一个邻近的电极构成。典型的CEDI单元有一个交替的离子排除(净化)室和离子浓缩室,它们可以用同一个水源供给,也可以用不同的水源供给。水在CEDI设备中通过离子传递得到纯化。在穿过离子排除(净化)室时,水中的离子化物质或可电离物质就被排到离子浓缩室的浓缩水流中。

 

The water that is purified in CEDI units passes only through the electrically charged ion exchange media, and not through the ion exchange membranes. The ion exchange membranes are permeable to ionized or ionizable species, but not permeable to water.

CEDI单元中纯化的水只穿过填充的离子交换介质,并不通过离子交换膜。离子交换膜是可以透过离子化或可电离的物质,但不透水。

 

The purifying cells typically have permanently charged ion exchange media between a pair of ion exchange membranes. Some units incorporate mixed (cationic and anionic) ion exchange media between a cationic membrane and an anionic membrane to form the purifying cell. Some units incorporate layers of cation and anion ion exchange media between ion exchange membranes to form the purifying cell. Other devices create single purifying cells (cationic or anionic) by incorporating a single ion exchange medium between ion exchange membranes. CEDI units can be configured with the cells in a plate and frame, or spiral wound configuration.

典型的纯化室是在一对离子交换膜间永久的填充离子交换媒介。一些单元是在一个阳离子膜和一个阴离子膜之间填充混合(阳离子和阴离子)的离子交换媒介,以形成纯化室。一些单元是在离子交换膜间填充阳离子层和阴离子层以形成纯化室。一些设备是通过在离子交换膜间填充单种离子交换媒介以形成单种纯化室(阳离子或阴离子)。CEDI单元可做成平板型或框型,或螺旋卷型。

 

The power supply creates a DC electric field between the cathode and anode of the CEDI device. Cations in the feed water stream passing through the purifying cell are drawn to the cathode. Cations are transported through the cation exchange media and either pass through the cation permeable membrane or are rejected by the anion permeable membrane. Anions are drawn to the anode and are transferred through anion exchange media and either pass through the anion permeable membrane or are rejected by the cation permeable membrane. The ion exchange membranes are oriented in a manner which contains the cations and anions removed from the purifying cells in the concentrating cells so that the ionic contaminants are removed from the CEDI unit. Some CEDI units utilize ion exchange media in the concentrating cells, while others do not.

电源在CEDI设备的阳极和阴极间产生一个直流电场。穿过纯化室的给水中的阳离子跑到阴极。阳离子的传送情况是:穿过阳离子交换介质、或者穿过阳离子渗透膜,或者是被阴离子渗透膜拦截。阴离子跑到阳极,其传送情况是:穿过阴离子交换媒介、或者穿过阴离子渗透膜,或者是被阳离子渗透膜拦截。离子交换膜定向的将纯化室中的阴离子和阳离子转移到浓缩室中,这样就可以去除CEDI单元中的离子污染。

 

As the ionic strength of the purified water stream decreases the high voltage gradient at the water-ion exchange media interfaces can cause water decomposition to its ionic constituents (H+ and OH-). The H+ and OH- ions are created continuously and regenerate the cation and anion exchange media, respectively, at the outlet end of the purifying cells. The constant high level of ion exchange media regeneration level allows production of high purity water (1 to 18 Mohm-cm) in the CEDI process.

当纯化的水流中离子强度降低后,水-离子交换媒介表面的高压梯度可以使水分解成离子形式(H+OH-)。在纯化室的出口处不断的生成H+OH-离子,并且它们可以不断的再生阴离子和阳离子交换媒介。在CEDI过程中,连续的离子交换媒介的高度再生水平促使产生高纯度的水(1 to 18 Mohm-cm)。

 

5.3.2 Application应用

 

In some cases, where drug microbiological quality is of lesser concern, CEDI units may be utilized down stream of reverse osmosis (RO) units in production of USP Purified Water or non-compendial water to increase the life of the CEDI units. For USP WFI water, the CEDI units are utilized up stream of reverse osmosis (RO) units.

在某些不是非常关注药品中的微生物的情况下,可在反渗透单元的下游使用CEDI单元来生产USP纯化水或非药典规定的水以增加CEDI单元的使用寿命。但是对于生产USP注射用水,则应在反渗透单元的上游使用CEDI单元。

 

5.3.3 Limitations限度

 

CEDI units cannot remove all contaminants from water. The principal removal mechanism is for ionized or ionizable species. CEDI units cannot purify 100% of the feed water stream, as a concentrate stream is always required to remove the contaminants from the system. CEDI has temperature limitations for practical operation. Most CEDI units are operated between 10 - 40(50 - 104).

CEDI单元不能除去水中所有的污染物。主要是去除离子化的或可电离的物质。CEDI单元不能纯化100%的给水,因为浓缩液通常需要去除来自系统的污染CEDI有实际操作温度限制。多数CEDI单元是在10 - 40(50 - 104)下操作的。

 

5.3.4 Pre-treatment Requirements 对预处理的要求

 

CEDI units must be protected from scale formation, fouling and thermal or oxidative degradation. The RO/pretreatment equipment typically reduces hardness, organics, suspended solids, and oxidants to acceptable levels.

必须防止CEDI单元结垢、生污垢以及热或氧化降解。反渗透/预处理设备可以将硬度、有机物、悬浮固体和氧化剂降低到合适的水平。

 

5.3.5 Performance性能

 

CEDI unit performance is a function of feed water quality and unit design. Ionized solids reduction is generally greater than 99% allowing production of 1 - 18 Mohm-cm quality water from reverse osmosis feed water Organic rejection typically varies from 50% to 95% depending upon the type of organic material present the feed stream. Ultraviolet light (185 nm) upstream of CEDI units can substantially increase organic rejection. Dissolved carbon dioxide is converted to bicarbonate ion and removed as dissolved ion. Dissolved silica removal is in the range of 80 - 95%, dependent upon operating conditions.

CEDI单元的性能取决于给水的性质和单元的设计。如果从反渗透出来的水的质量是1-18 Mohm-cmCEDI单元一般可以将水中离子化的物质降低99%。其拦截有机物的水平根据给水中出现的有机物类型的不同在50%-95%间变化。在CEDI单元上游的紫外光(185 nm)可显著增加有机物的拦截效果。溶解的二氧化碳转化成了碳酸氢根离子并作为溶解的离子被除去。溶解的二氧化硅的去除范围是80-95%,这取决于操作的条件。

 

5.3.6 Cost Savings Factors成本节约因素

 

Most of the cost savings opportunities revolve around the correct choices in materials of construction, instrumentation, and post-treatment equipment selection. Acceptable materials of construction for piping can vary from PVC to 316L SS. Choosing to monitor only the critical parameters, such as resistivity, flow, and pressure can minimize instrumentation. Many applications for Purified Water require no post-treatment after electrodeionization. Some systems incorporate ultraviolet light and/or sub-micron filtration to either reduce sanitization requirements or to provide microbial levels well below those allowed for Purified Water production as outlined in the USP.

这些系统的多数成本节约机会都是对下列项的正确选择:建造材料、使用的仪器和后处理设备的选择。结构中适用的管线材料可以从PVC316L SS里面选。选择只监控一些关键参数(如:电阻率、流速、压力等)能将使用仪器降到最低。许多应用的纯化水不要求在电法去离子后还有后处理。有些系统加入的紫外光和/或亚微粒过滤,用于降低消毒要求或者使微生物水平满足USP对纯化水的微生物水平的要求。

 

5.3.7 Advantages and Disadvantages 优点和缺点

 

Advantages优点:

 

·Attainment of stage 1 conductivity 达到一级电导率

·Elimination of chemical handling 无需化学药品处理

·Elimination of outside service (off-site regenerated resin) 无需外部辅助设备(脱线再生树脂)

·Electric field in membrane/resin module provides some bacterial control /树脂模块中的电场可控制细菌

·Removal of ionizable substances (e.g., carbon dioxide, ammonia, and some organics) 去除可电离的物质(如:二氧化碳、铵以及一些有机物)

 

Disadvantages缺点:

 

·Does not remove non-ionic contaminants不能除去非离子形式的污染

·Unique designs for each manufacturer (modules are not interchangeable) 不同的生产商的设计不同(模块是不可互换的)

·May require UV, sub-micron filtration, or reverse osmosis (RO) for further bacterial reduction可能要求紫外、亚微粒过滤或反渗透来进一步减少细菌

·May require reverse osmosis pretreatment 可能需要反渗透预处理

·Rinse up after chemical sanitization may take hours to reach peak resistivity and TOC 化学消毒后的冲洗可能需要数小时才能达到电阻率和TOC的峰值

 

5.3.8 Sanitization消毒

 

CEDI units are typically chemically sanitized with a number of agents including: peracetic acid, sodium percarbonate, sodium hydroxide, hydrogen peroxide, and others.

CEDI单元主要是用化学试剂消毒。这些化学试剂包括:过氧乙酸、过碳酸钠、氢氧化钠、过氧化氢及其他试剂

 

5.4 REVERSE OSMOSIS 反渗透系统

 

5.4.1 Description说明

 

Reverse osmosis (RO) is a pressure driven process utilizing a semi-permeable membrane capable of removing dissolved organic and inorganic contaminants from water. A semi-permeable membrane is permeable to some substance such as water, while being impermeable to other substances such as many salts, acids, bases, colloids, bacteria, and endotoxins.

反渗透是一个压力驱动过程,它用一个半渗透膜除去水中溶解的有机污染物和无机污染物。半渗透膜只能让某些物质透过(如水),其他一些物质是不能通过的,如:盐、酸、碱、胶体、细菌和内毒素。

 

RO membranes are produced commercially in a spiral wound configuration for pharmaceutical water production. Membranes are available in two basic materials; cellulose acetate and thin film composite (polyamide). All of the membrane types have advantages and disadvantages. Membrane operating parameters are shown in Table 5-3, below.

商业生产的用于制药用水的反渗透膜是螺旋卷型的。膜可由两种基本材料构成:醋酸纤维和薄膜(聚酰胺)。各种类型的膜都有其优点和缺点。下表5-3中将显示膜的操作参数。

 

RO membranes without leading edge brine seals, allow controlled flow between the membranes and pressure vessels to minimize bacterial growth.

没有采用边缘盐封的反渗透膜可以控制水在膜和压力容器间的流速以将微生物生长降到最低。

 

Table 5-3 RO Membrane Operating Parameters

5-3 反渗透膜操作参数

 

Cellulose Acetate

醋酸纤维素膜

Polyamide/TFC

聚酰胺/TFC

pH

4-7

2-11

Chlorine Limit氯限度, mg/l

1.0

0.05*

Resistance to Bacteria 抗菌性

Poor

Good

Operating Temperature Range 操作温度范围℃

15-28

5-50

Rejection拦截率 - %

90-98

97-99

Sanitization Temp. Limit, 消毒温度限度℃

30

50-80

Typical TDS Feed Range, 给水的TDS范围 mg/l

30-1000

30-1000

Silt Density Index, Max水污泥指数测定,最大值

5

5

*BEST OPERATION AT 0.0  *最好在0.0 mg/l

 

5.4.2 Application 应用

 

Reverse osmosis can be successfully implemented in pharmaceutical systems in several ways. RO can be utilized upstream of regenerable deionizers, or off-site regenerated deionizers, to reduce general acid and caustic consumption, or to minimize resin replacement costs. Two-pass RO units (product staged) with proper pH control are generally capable of producing water that meets the requirements of the USP for TOC and conductivity.

在许多制药系统中反渗透的应用方式有多种。反渗透用在再生离子交换装置或脱位再生离子交换装置的上游,以减少普通的酸和碱的消耗,或将再生树脂的成本降到最低。有合适pH控制的二级反渗透(产品级)单元制造的水通常能满足USPTOC和电导率的要求。

 

5.4.3 Limitations 限度

 

Reverse osmosis cannot remove 100% of contaminants from water and has very low to no removal capacity for some extremely low molecular weight dissolved organics. RO, however, quantitatively reduces bacteria, endotoxins, colloids and high molecular weight organics from water.

反渗透不能去除水中的100%污染,其去除溶解在水中的分子量非常低的有机物的能力非常小且近乎为零。但是,反渗透能从数量上减少水中的细菌、内毒素、胶体和高分子量的有机物。

 

RO cannot purify 100% of a feed water stream. A concentrate flow is always necessary to remove the contaminants that are rejected by the membrane. Many users of RO utilize the waste stream from the RO unit for cooling tower make-up water or compressor cooling water, etc.

反渗透不能净化100%的给水。反渗透膜会将用于去除污染的浓缩水流抵制在外。许多反渗透设备的使用者将反渗透单元的废水用做冷凝塔的用水或压缩机冷凝水等。

 

Carbon dioxide passes directly through the RO membrane and CO2 will be in RO product stream at the same level that present in the feed water stream. Excess carbon dioxide in the RO product stream may increase the product conductivity beyond the USP Stage 1 limit. Carbon dioxide contributes to the loading of anion resin which may be downstream of the RO units.

二氧化碳可以直接穿过反渗透膜,并且从反渗透单元出来的产品水中的CO2含量同给水中的一样。如果从反渗透单元出来的产品水中的CO2含量过高的话,产品水的电导率将超过USP的一级标准。如果反渗透单元的下游有阴离子树脂的话,二氧化碳增加阴离子树脂的负荷。

 

Reverse osmosis has temperature limitations for practical operation. Most RO systems operate on feed water between 5and 28.

实际操作中反渗透系统是有温度限度的。许多反渗透系统对给水的操作温度要求是在5-28℃间。

 

5.4.4 Pretreatment Requirements 对预处理的要求

 

Reverse osmosis membranes must be protected from scale formation, membrane fouling, and membrane degradation. Scaling is possible since the contaminants present in the feed water stream are being concentrated into the waste stream, which is an average of 25% of the feed stream. Scale control is normally prevented by the use of water softening upstream of the membranes, the injection of acids to lower the pH of the feed water stream, or an anti-sealant compound to prevent precipitation.

必须防止反渗透膜结垢、膜生污垢以及膜降解。结垢是可能的,因为给水中存在的污染物被浓缩到废水中了,并且废水平均只是给水的25%。通常在反渗透膜的上游添加软化装置来控制结垢,向水中添加酸来降低给水的pH,或者添加抗凝剂来防止沉淀。

 

Reverse osmosis membrane fouling is reduced through the use of back-washable multi-media filters or cartridge filters for suspended solids, greens and filtration or softening for colloidal iron removal, and various microbial control pretreatment methods to reduce biological fouling.

减少反渗透膜的生污可通过下列方法实现:使用可反洗的多介质过滤器或中空纤维滤器来过滤悬浮固体,使用greens过滤或软化来去除胶体铁,以及各种控制微生物的预处理方法来减少生物污垢。

 

The principal causes of membrane degradation are oxidation of certain membrane materials and heat degradation. Membranes, which cannot tolerate chlorine normally, incorporate activated carbon or injection of various sodium sulfite compounds for dechlorination. Protection against high temperature is normally incorporated where the feed water is preheated and the membrane material cannot tolerate high temperature.

膜降解的主要原因是:膜的特定材料的氧化降解和热降解。膜通常不能耐受氯,可以添加活性碳或各种亚硫酸钠成分来脱氯。通常会在给水是预热的以及膜材料不耐受热的情况下做防高温保护。

 

The reverse osmosis pretreatment unit operations are reviewed in Chapter 4.

可在第4章回顾反渗透预处理单元的操作。

 

5.4.5 Performance 性能

 

A single stage of reverse osmosis elements typically reduces the level of raw water salts, colloids, organics, bacteria, and endotoxin by 90 to 99%. Single stage reverse osmosis product water does not normally meet the requirements of the USP without further purification steps. Some two-pass units (two sets of RO membranes in series) produce water that can pass the USP 24 Stage 1 conductivity requirements, allowing On-Line testing. Those units that do not meet the Stage 1 requirement normally meet Stage 2 or 3. Membrane selection should be based upon pretreatment requirements, operating performance characteristics, sanitization options, warranties, capital and operating costs, and the feed water source.

单级反渗透可将源水中的盐、胶体、有机物、细菌和内毒素降低90-99%。如果没有进一步的纯化步骤,单级反渗透制出的水通常不能满足USP 的要求。如果允许在线检验的话,一些二级反渗透(串联的两个反渗透膜装置)制出的水可通过USP24一级电导率要求。那些不能满足一级要求的单元通常可以满足二级或三级要求。应根据预处理的要求、操作性能、消毒选项、质量保证、资金和运行成本以及给水水源来选择膜。

 

5.4.6 Advantages and Disadvantages 优点和缺点

 

Advantages:优点:

 

·Reverse osmosis units eliminate or significantly reduce chemical handling and disposal, relative to regenerable ion exchange systems 相对于再生离子交换系统来说,反渗透单元可以免除或显著降低化学试剂的操作和处理

·Generally, RO has more effective microbial control than ion exchange systems 总的来说,反渗透能比离子交换系统更有效的控制微生物

·Integrity testing can be accomplished by salt challenge and measurement of differential conductivity 可通过盐激和测量电导率的差异来检验完整性

·RO removes a wide variety of contaminants including ionized solids and non-ionic materials (e.g., colloids, bacteria, endotoxin, and some dissolved organics) 反渗透去除的污染范围广泛,包括:离子化物质、非离子物质(如胶体、细菌、内毒素和一些溶解的有机物)

 

Disadvantages:缺点

 

·Water consumption can be significantly higher than ion exchange systems unless the wastewater is reused 水的消耗要比离子交换系统大的多,除非对废水进行再利用

·Energy consumption is generally higher than ion exchange and less than distillation 能耗通常大于离子交换,但小于蒸馏

·No removal of dissolved gases (e.g., carbon dioxide and ammonia) 不能除去溶解的气体(如二氧化碳和铵)

 

5.4.7 Cost Saving Factors 成本节约因素

 

Capital costs can be minimized by reducing membrane area to the minimum suitable for the feed water quality and membrane selected. Piping material and finish significantly impact capital cost. Some systems incorporate PVC low-pressure piping and welded mill finish stainless steel high-pressure piping. Instrument costs can be minimized by appropriate selection of critical and non-critical parameters of operation. These parameters include:

在适合给水的水质和选定的膜的基础上,将膜的面积降低最小,以将资金成本降低到最低。管线的材料和磨光对资金成本有很大影响。一些系统采用了PVC低压管线和焊接磨光不锈钢高压管线。通过对关键和非关键操作参数做出适当的选择,来将仪器成本降低到最小。这些参数包括:

·Flow 流速

·Pressure 压力

·Temperature 温度

·Conductivity 电导率

 

5.4.8 Waste Water Reuse 废水的再利用

 

RO wastewater is frequently used as cooling tower make-up, or for non-contact cooling for compressors, or other heat loads. Wastewater is sometimes re-purified in a wastewater reverse osmosis unit for reintroduction as system feed water. RO wastewater is sometimes used for filter backwash. The wastewater from the second pass of a two pass RO is normally returned to the feed water stream of the first pass RO.

反渗透的废水通常用做冷凝塔的供水,或用于压缩机的非接触冷凝水,或者其他热负载。有时废水也在废水反渗透单元里经再纯化后用作系统给水。反渗透的废水有时会用于反洗过滤器。从二级反渗透系统中的第二级反渗透中出来的废水通常会再作为第一级反渗透的给水。

 

5.4.9 Sanitization 消毒

 

All RO membranes can be sanitized with some chemical agents that vary as a function of membrane selection. Specially constructed membranes are available for hot water sanitization at 60to 80.

所有的反渗透膜都可以用一些化学试剂消毒,可根据膜的功能来选择不同的化学试剂。一些特殊结构的膜可以用60-80℃的热水来消毒。

 

5.5 POLISHING COMPONENTS - NON-IONIC CONTAMINANTS REDUCTION抛光元件-降低非离子污染

 

5.5.1 Ultrafiltration 超滤

 

5.5.1.1 Description 说明

 

Ultrafiltration (UF) is a cross-flow process similar to reverse osmosis (RO). A pressurized feed stream flows parallel to a porous membrane filtration surface. A pressure differential forces water through the membrane. The membrane rejects particulates, organics, microbes, pyrogens, and other contaminants that are large to pass through the membrane. UF does not reject low molecular weight ionic contaminants, as does reverse osmosis.

超滤(UF)是一个错流(切向流)过程,它和反渗透(RO)相似。加压的给水水平的流向一个多孔膜过滤器表面。压差使得水穿过膜。膜可以拦截粒子、有机物、微生物、热源和其他不能穿过膜的污染物。同反渗透一样,超滤不能拦截低分子量的离子形态污染物。

 

Membranes are available in both polymeric and ceramic materials. Polymeric membrane elements are available in spiral wound and hollow fiber configurations. Ceramic modules are available in single channel and multiple channel configurations.

膜可以是多聚体材料也可以是陶瓷材料。多聚体膜的成分可做成螺旋卷式以及中空纤维式。陶瓷材料可做成单通道或多通道构型。

 

5.5.1.2 Application 应用

 

Ultrafiltration is utilized in several ways in Purified Water systems. UF is frequently used down stream of ion exchange processes for organic, colloidal, microbial, and endotoxin reduction. Purified Water with low endotoxin levels (<0.25 Eu/ml) is utilized by some manufacturers in ophthalmic solutions, topicals, and bulk pharmaceutical chemicals that will be utilized in parenteral manufacturing and other applications.

在纯化水系统中,超滤有多种利用方式。超滤通常用在离子交换步骤的下游,以降低有机物、胶体、微生物和内毒素。内毒素水平低(<0.25 Eu/ml)的纯化水通常用于以下一些生产领域:眼用药液、局部用药、化学原料药(用于生产无菌制剂,或其他用途)。

 

Ultrafiltration is frequently used in still feed water systems, in combination with ion exchange, to limit the endotoxin and colloidal silica feed levels to the still.

超滤通常联合离子交换一起用于蒸馏系统的给水,以限制蒸馏系统给水中的内毒素和胶状二氧化硅的水平。

 

5.5.1.3 Limitations 限度

 

Ultrafiltration cannot remove 100% of contaminants from water. No ionic rejection occurs and organic rejection varies with the various membrane materials, configuration, and porosity. Many different nominal organic molecular weight rejection ratings are available. Dissolved gases are not rejected by UF.

超滤并不能去除水中100%的污染物。它不会拦截离子形态,并且根据膜的材料、构型和孔率的不同其拦截的有机物也不同。许多不同的有机物名义分子量拦截等级都是适用的。超滤不能拦截溶解的气体。

 

Most ultrafilters require a waste stream to remove the contaminants on a continuous basis. The waste stream varies, but is usually two to ten percent. Some UF systems run dead-ended.

多数超滤都有废液流,可以连续的去除污染物。废液流量是不同的,但通常都是流入水量的2-10%。一些超滤系统是盲腔。

 

5.5.1.4 Pretreatment Requirements 对预处理的要求

 

Pretreatment can include multimedia filters, activated carbon filters, ion exchange, membranes, or others. The UF flux rate and cleaning frequency vary widely as a function of feed water and pretreatment. Most UF membranes are chlorine tolerant and do not require dechlorination of the feed water.

预处理可包括:多介质过滤器、活性碳过滤器、离子交换、膜过滤或其他方式。超滤的流率和清洁频率变化范围广泛,其取决于给水的情况和预处理情况。多数超滤膜是氯耐受的,并且不要求给水脱氯。

 

5.5.1.5 Performance 性能

 

UF is utilized to remove a variety of contaminants. The proper UF membrane must be selected to meet the performance requirements. Organic molecules can be rejected well, but the rating of UF membranes varies in molecular weight cutoffs from 1,000 to 100,000. Reduction of typical raw water organics is not as effective as reverse osmosis. Pressure drops vary with membrane selection and operating temperature. Some UF membranes are capable of continuous operation at temperatures up to 90, to provide excellent microbial control.

超滤可去除多种污染物。必须选择适当的超滤膜来满足性能要求。超滤能很好的拦截有机分子,但超滤膜拦截的分子量等级范围是:1,000-100,000。它对源水中典型的有机物的去除不象反渗透那样有效。根据选择的膜以及操作温度的不同,压力降低程度不同。有些超滤膜在温度升到90℃时,仍能连续的运行,可以很好的控制微生物。

 

UF reduction of endotoxin (pyrogens) varies from 2 log10 to 4 log10 as a function of membrane selection. UF has been shown to be capable of consistent production of water meeting the USP WFI endotoxin limit of 0.25 Eu/ml in typical system applications. UF produces excellent microbial reduction with typical ratings of 3 log10 to 4 log10 reduction.

根据选择的膜的功能不同,超滤去除内毒素(热源的)范围是log104 log10。在特定的系统中,已显示出超滤能制造出能满足USP注射用水的内毒素限度-0.25 Eu/ml。超滤可以很好的降低微生物水平,典型的降低定值是3 log104 log10

 

UF produces excellent particle reduction and is frequently used in other applications, such as semiconductor production when particle control is far more critical than pharmaceutical water.超滤在降低水中的微粒方面效果卓越,同时也经常用在其他方面:如半导体生产领域该领域对水中的粒子要求远远严格于制药企业.

 

5.5.1.6 Advantages and Disadvantages优点和缺点

Advantages:优点

• UF can remove some contaminants, such as endotoxin and organics, better than microfiltration在去除诸如内毒素和有机物等污染物方面,超滤优于微孔过滤。

• UF can have more effective operating costs than microfiltration, in high particle loading applications.在清除大粒子方面,超滤的运行成本低于微孔过滤。

• Some UF elements can tolerate more rigorous sanitization procedures using steam or ozone, than some other membrane filters (MF or RO).一些超滤器比其他膜过滤器(如微孔过滤或反渗透)更能耐受条件严格的消毒处理,比如蒸汽和臭氧。

• The waste stream is generally much less than waste from reverse osmosis units通常情况下,超滤所产生的废液远小于反渗透。

• Ultrafiltration is generally less energy intensive than reverse osmosis通常情况下,超滤所耗费的能量小于反渗透。

Disadvantages:缺点

• UF cannot remove ionic contaminants, where reverse osmosis can超滤不能除去离子污染,而反渗透可以。

• UF generally requires a waste stream, which can be a significant cost factor

通常情况下,超滤产生废液流,这是显著提高成本的一个因素。

• UF membranes are sometimes more difficult to integrity test than microfiltration cartridges在有些情况下,比起微孔滤器,超滤膜更难进行完整性测试。

5.5.1.7 Cost Savings Factors节省成本的因素

Capital costs can be influenced by the optimum sizing of membrane area and membrane selection. Piping material and finish significantly impact capital cost. Some systems incorporate various plastic piping materials while others utilize sanitary 316L SS. The sanitization method selected is a major factor in material selection. Instrument costs can be minimized by appropriate selection of critical and non-critical parameters of operation. 过滤膜理想的级别和过滤膜的种类可能影响资产成本,管道材质和抛光处理显著影响资产成本。一些系统使用各种塑料管材而另一些则使用清洁的不锈钢316L SS。消毒方式的选择是材料选择的一个重要因素。通过合理选择关键和非关键的运行参数,可使资产成本降至最低。

5.5.1.8 Sanitization消毒

UF membranes are sanitized in many different ways. Most polymeric membranes are tolerant of a wide variety of chemical sanitizing agents such as sodium hypochlorite, hydrogen peroxide, peracetic acid, sodium hydroxide, and many others. Some polymeric membranes can be hot water sanitized and some can even be steam sanitized.可用多种不同的方式对超滤膜进行消毒,绝大部分聚合膜可耐受多种消毒剂,比如:次氯酸钠、过氧化氢、高氯酸、氢氧化钠等,一些聚合膜可用热水消毒而另一些甚至可用蒸汽消毒。

Ceramic UF elements can tolerate all common chemical sanitizing agents, hot water, steam, and ozone in sanitization or sterilization procedures.在消毒和灭菌过程中,陶质超滤器可以耐受所有的化学消毒剂、热水、蒸汽以及臭氧。

5.5.1.9 Waste Water Recovery 废水利用

Most pharmaceutical UF units are fed deionized water for USP Purified Water production or special non-compendial water applications. The wastewater is therefore still low conductivity water that can be recycled upstream to reverse osmosis units or fed directly to boilers, cooling towers, or other uses.绝大部分情况下,进入药用超滤器的水都是USP纯化去离子水或特殊的非药典去离子水,因此,废水的电导率也很低,可以循环回反渗透系统继续处理,或直接进入锅炉、冷却塔,或用于其他方面。

5.5.2 Microfiltration微孔过滤

5.5.2.1 Description介绍

Microfiltration is a membrane process utilized for the removal of fine particles and microorganisms. No waste stream is generally employed in microfiltration processes. Virtually all microtiltration cartridges are disposable and are available in a wide range of materials and pore sizes. In final filtration the filters general range from 0.45 microns down to 0.04 microns. Microfilters are used in a wide range of applications, including aseptic filling of pharmaceutical products, which are not tolerant of terminal sterilization.微孔过滤是用于去除微小粒子和微生物的一种膜处理方法,在微孔过滤过程中一般不产生废水流。事实上所有的微孔器都是不能再生使用的,其材质和孔径的选择范围非常大。在用于终过滤时,微孔过滤器孔径的大致范围从0.04微米到0.45微米。微孔过滤应用范围很广,包括对不能耐受最终无菌处理的药品进行无菌灌装。

Microfilters are generally employed in purified water systems for microbial retention downstream of components where some microbial growth may exist. Microfilters can be extremely effective in this area, but operating procedures must be in place to assure filter integrity during installation and membrane replacement to insure proper performance. Microfilters are most appropriately employed in central purified water production systems and their use is discouraged in distribution systems. The filters should not be the only microbial control unit operation in the system. They need to be a part of a comprehensive microbial control plan. Minimizing the number of locations of microfiltration makes proper maintenance easier. (See Chapter 8.)

在纯化水系统中,微孔过滤通常用于清除组件下游的微生物,因为微生物可能会在这些组件中生长。微孔过滤在这一方面效率非常高,但是必须有操作程序以保证安装过程中过滤器的完整性,而且要确保对滤膜进行更换以保证其性能正常。微孔过滤最适合用于中心纯化水生产系统,而在分配系统中则不建议使用。系统中不应只用过滤器来进行微生物控制,过滤器应当是一个复杂的微生物控制计划的一部分。微孔过滤安装地点数量的最小化,可以使正常的保养变得简单。(见第8章)

 

5.5.2.2 Advantages and Disadvantages优点和缺点

Advantages:优点

   Simple design and maintenance设计和保养简单。

   Flexible in water flow production在水生产中可灵活选择。

   No waste stream无废液流

   Cartridges are integrity testable可检测滤器的完整性

   Heat and chemical sanitization of microfilters可对微孔过滤器进行加热和化学消毒

Disadvantages:缺点

  Can only be used as a safety net for microbial production只能用做防止微生物产生的安全网

  No ion or endotoxin removal不能去除离子和内毒素

  Shorter life due to dead head design, so replacement is required。死头设计可能会降低使用寿命,因此需要更换

  Not recommended for use in distribution piping不推荐在分配管道中进行使用。

5.5.2.3 Performance功能

Microfiltration can be as effective as ultrafiltration in microbial reduction and can minimize water consumption, as no waste stream is necessary. Microfiltration, however, cannot reduce dissolved organic levels as ultrafiltration can, and microfiltration cannot remove particles as small as ultrafilters can, due to the difference in pore size. Heat and chemical sanitization of microfilters is possible with the proper selection of material.微孔过滤在降低微生物方面和超滤一样有效,由于不产生废液流,它还可以使水的消费量最小化。然而由于孔径上的差异,微孔过滤不能降低溶解的有机物水平(超滤可以),而且去除微粒的粒径也大于超滤。根据所选择的微滤的材料的不同,是可以用加热或者化学试剂的方法对微滤进行消毒。

5.5.3  Ultraviolet Light Treatment紫外处理

5.5.3.1 Description介绍

Ultraviolet light rays strike microorganisms (bacteria, virus, yeast, mold, or algae) and break through their outer membrane to modify the DNA. The modified DNA code brings about the destruction of the organism. 紫外线破坏微生物(细菌,病毒,霉菌,真菌或藻类),穿透微生物外膜改变其DNADNA编码的变化最终导致微生物死亡。

The ultraviolet radiation is a point of use application with no residual radiation characteristics. Proper prefiltration sould be implemented to keep particulate from shielding organisms from UV light. (See Chapter 8.) 紫外线有应用时没有射线残留的特点。应当进行适当的预处理,以阻止微粒保护微生物免受紫外破坏。

 

5.5.3.2 Advantages and Disadvantages优点和缺点

Advantages:优点

• Simple design and maintenance设计和保养简单。

• 254 nm design for microbial reduction  254 nm用于降低微生物水平

• 185 nm design for TOC reduction 185 nm用于降低TOC

• No waste stream无废液流

• Heat, ozone, and chemical sanitization are possible 可进行加热、臭氧及化学消毒。

Disadvantages:缺点

• Can be used only as a safety net for microbial production只能用做防止微生物产生的安全网

• No ion or endotoxin removal不能去除离子和内毒素

  No disinfection residual无消毒残留

• Particulate can shield organisms from UV light水中的微粒可保护微生物免受紫外光的破坏。

 

5.5.3.3 Performance功能

The UV light is used as a final treatment step to address microbial control and TOC reduction (where necessary), after deionization processes.UV光线可用于控制微生物和降低TOC的终处理过程(必要时)

Figure 5-1 Purified water 5-1 纯化水

Final Treatment 终处理

Primary ion removal

去除主要离子

 

polishing抛光处理

 

RO 1ST Pass

一级反渗透

Continuous electrodeioniationg

连续的电法去离子

Ion exchange 离子交换

Drinking water

饮用水

Well water

井水

Surface water

地表水

Pretreatment

预处理

Final Treatment 终处理

Primary ion removal

去除主要离子

 

polishing抛光处理

 

RO 1ST Pass

一级反渗透

RO 2nd  Pass

二级反渗透

 

Pharmaceutical water storage/distribution

药用水储藏和分配

USP PURIFIED WATER

Alternative System #1 and #2

#1

#2

See figure 1 in chapter 4 pretreatment

见第4章预处理图1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


See figure 1 in chapter 4 pretreatment

见第4章预处理图1

Primary ion removal and

polishing

去除主要离子以及抛光处理

 

 

Ion exchange

离子交换

UL 超滤

ML 微孔过滤

Ultraviolet紫外

Final Treatment 终处理

Primary ion removal

去除主要离子

 

Polishing

抛光处理

#3

Pharmaceutical water storage/distribution

药用水储藏和分配

 

Ion cxchang离子交换

#4

Drinking water

饮用水

Well water

井水

Surface water

地表水

Pretreatment

预处理

USP PURIFIED WATER

Alternative System #3 and #4

Final Treatment 终处理

l   Distillation,VC 压汽蒸馏

l   Distillation,SE

l   Distillation,ME多效蒸馏

 

Figure 5-2

 

Table 5-4 Purified Water Systems Comparison Chart纯化水系统比较图

 

Off-Site Regenerated Ion Exchange

脱位再生离子交换

Reverse Osmosis/ Off-Site Regenerated Ion Exchange

反渗透/脱位再生离子交换

On-Site Regenerated Ion Exchange在位再生离子交换 

Reverse Osmosis/ On-Site Regenerated Ion Exchange 反渗透/在位再生离子交换

Reverse Osmosis/ Continuous Electrodeionization 反渗透/连续电法去离子

Two-Pass Reverse Osmosis 二级反渗透

Distillation

蒸馏

CAPITAL COST

L

M

M

M

M

M

H

CHEMICAL HANDLING

化学处理

N

L

H

M

L

L

L(2)

ENERGY CONSUMPTION

能量消耗

L

M

L

M

M

M

H

WATER CONSUMPTION

水消耗

L

H(1)

M

H(1)

H(1)

H(1)

M(3)

OUTSIDE SERVICE COSTS

外部维修/保养费用

H

M

L

L

L

L

L

OPERATIONAL MAINTENANCE

操作保养

L

M

M

M

M

M

L

PRODUCT CONDUCTIVITY MICROSIEMEN / CM @ 25°C

成品水传导率

1.0-0.06

1.0-0.06

1.0-0.06

1.0-0.06

1,0-0.07

2.5-0.5

1.0-0.1

PRODUCTTOC 成品水TOC.PPB

(4)

<500

(4)

<500

<500

<500

<500

MICROBIAL PERFORMANCE去除微生物的能力

L

M

L "

M

M

H

H

Ratings级别:    N = None     L = Low     M = Medium    H = High

Notes for Table 5-4:注意

1)  High-water consumption unless wastewater is reused - cooling tower makeup, etc.除非废水能重利用(比如用于冷却塔),否则水消耗量很高

2)  Total chemical requirement dependent upon pretreatment selection总化学要求取决于预处理方式的选择。

3)  Total water consumption dependent upon pretreatment selection.水消耗总量取决于预处理方式的选择。

4)  USP TOC requirement is met in most cases but may not be if feed water is high TOC (>2 ppm)产品水在绝大部分情况下能达到USP TOC的标准,但在给水的TOC>2 ppm时,则产品水可能不能达标。

5i  High microbial performance refers to low microbial count in relative terms以上各项去除微生物的能力指的是各项能够降低微生物的数量